Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Infect Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036299

RESUMO

BACKGROUND: Only 35.6%-50.8% of patients with Mycobacterium avium complex (MAC) pulmonary disease achieve sustained sputum culture conversion (SSCC) on treatment with the azithromycin-ethambutol-rifabutin standard of care (SOC). We tested the efficacy of ceftriaxone, a ß-lactam with a lung penetration ratio of 12.18-fold. METHODS: We mimicked lung concentration-time profiles of seven ceftriaxone once-daily doses for 28 days in the hollow fiber system model of intracellular MAC (HFS- MAC). Monte Carlo experiments were used for dose selection.We also compared the once-daily ceftriaxone monotherapy to three-drug SOC against five MAC clinical isolates in HFS-MAC using γ (kill)-slopes. Results were translated to SSCC rates. RESULTS: Ceftriaxone killed 1.02-3.82 log10 cfu/mL in dose-response studies. Ceftriaxone 2G once-daily was identified as the optimal dose. Ceftriaxone killed all five strains below day 0 versus 2/5 for SOC. The median γ (95% confidence interval) was 0.49(0.47-0.52) log10 cfu/mL/day for ceftriaxone and 0.38(0.34-0.43) log10 cfu/mL/day for SOC. In patients, the SOC was predicted to achieve SSCC rates of 39.3%(36%-42%) at 6 months (similar to meta-analyses results). The SOC SSCC was 50% at 8.18(3.64-27.66) months versus 3.58(2.20-7.23) months for ceftriaxone. Thus, ceftriaxone shortened time-to-SSCC 2.35-fold compared to SOC. CONCLUSION: Ceftriaxone is a promising agent for creation of short-course chemotherapy.

2.
J Antimicrob Chemother ; 78(4): 953-964, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794692

RESUMO

BACKGROUND: The hollow-fibre system model of tuberculosis (HFS-TB) has been endorsed by regulators; however, application of HFS-TB requires a thorough understanding of intra- and inter-team variability, statistical power and quality controls. METHODS: Three teams evaluated regimens matching those in the Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) study, plus two high-dose rifampicin/pyrazinamide/moxifloxacin regimens, administered daily for up to 28 or 56 days against Mycobacterium tuberculosis (Mtb) under log-phase growth, intracellular growth or semidormant growth under acidic conditions. Target inoculum and pharmacokinetic parameters were pre-specified, and the accuracy and bias at achieving these calculated using percent coefficient of variation (%CV) at each sampling point and two-way analysis of variance (ANOVA). RESULTS: A total of 10 530 individual drug concentrations, and 1026 individual cfu counts were measured. The accuracy in achieving intended inoculum was >98%, and >88% for pharmacokinetic exposures. The 95% CI for the bias crossed zero in all cases. ANOVA revealed that the team effect accounted for <1% of variation in log10 cfu/mL at each timepoint. The %CV in kill slopes for each regimen and different Mtb metabolic populations was 5.10% (95% CI: 3.36%-6.85%). All REMoxTB arms exhibited nearly identical kill slopes whereas high dose regimens were 33% faster. Sample size analysis revealed that at least three replicate HFS-TB units are needed to identify >20% difference in slope, with a power of >99%. CONCLUSIONS: HFS-TB is a highly tractable tool for choosing combination regimens with little variability between teams, and between replicates.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacocinética , Moxifloxacina/farmacologia , Reprodutibilidade dos Testes , Modelos Biológicos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Quimioterapia Combinada
3.
Artigo em Inglês | MEDLINE | ID: mdl-33558291

RESUMO

Standard therapy [isoniazid, rifampin, ethambutol], with or without a macrolide, for pulmonary Mycobacterium kansasii lasts more than a year. Therefore, shorter treatment duration regimens are required. We used data from 32 Taiwanese patients treated with standard therapy who were followed using repetitive sampling-based sputum Mkn time-to-positivity in liquid cultures to calculate kill slopes [γ] based on ordinary differential equations and time-to-extinction of each patient's bacterial burden. The γ was 0.18 [95% Confidence Interval (CI): 0.16-0.20] log10 CFU/mL/day on standard therapy. Next, we identified Mkn time-to-extinction in the hollow fiber system model of pulmonary M. kansasii disease [HFS-Mkn] treated with standard therapy, which was a γ of 0.60 [95% CI: 0.45-0.69) log10 CFU/mL/day. The γs and time-to-extinctions between the two datasets formed structure-preserving maps based on category theory: thus, we could map them from one to the other using morphisms. This mapping identified a multistep non-linear transformation-factor for time-to-extinction from HFS-Mkn to patients. Next, a head-to-head study in the HFS-Mkn identified median time-to-extinction for standard therapy of 38.7 [95% CI: 29.1-53.2) days, isoniazid-rifampin-ethambutol-moxifloxacin of 21.7 [95% CI: 19.1-25) days, isoniazid-rifampin-moxifloxacin of 22 [96% CI: 20.1-24.5) days, and rifampin-moxifloxacin-tedizolid of 20.7 [95% CI:18.5-29) days. Our transformation-factor based translation predicted the proportion of patients of 90.7 [88.74-92.35)% achieving cure with standard therapy at 12 months, and 6-months cure rates of 99.8 [95% CI: 99.27-99.95)% for isoniazid-rifampin-ethambutol-moxifloxacin, 92.2 [90.37-93.71)% for isoniazid-rifampin-moxifloxacin, and 99.9 [99.44-99.99)% for rifampin-moxifloxacin-tedizolid. Thus, rifampin-moxifloxacin-tedizolid and isoniazid-rifampin-ethambutol-moxifloxacin are predicted to be short-course chemotherapy regimens for pulmonary M. kansasii disease.

4.
Front Pharmacol ; 13: 1024608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330086

RESUMO

Background: There is need for shorter duration regimens for the treatment of tuberculosis, that can treat patients regardless of multidrug resistance status (pan-tuberculosis). Methods: We combined minocycline with tedizolid, moxifloxacin, and rifampin, in the hollow fiber system model of tuberculosis and mimicked each drugs' intrapulmonary pharmacokinetics for 28 days. Minocycline-tedizolid was administered either as a once-a-week or a daily regimen. In order to explore a possible explanation for effectiveness of the once-a-week regimen, we measured systemic and intra-bacterial minocycline pharmacokinetics. Standard daily therapy (rifampin, isoniazid, pyrazinamide) was the comparator. We then calculated γ f or kill slopes for each regimen and ranked the regimens by time-to-extinction predicted in patients. Results: The steepest γ f and shortest time-to-extinction of entire bacterial population was with daily minocycline-rifampin combination. There was no difference in γ f between the minocycline-tedizolid once-a-week versus the daily therapy (p = 0.85). Standard therapy was predicted to cure 88% of patients, while minocycline-rifampin would cure 98% of patients. Minocycline concentrations fell below minimum inhibitory concentration after 2 days of once-weekly dosing schedule. The shape of minocycline intra-bacterial concentration-time curve differed from the extracellular pharmacokinetic system and lagged by several days, consistent with system hysteresis. Hysteresis explained the persistent microbial killing after hollow fiber system model of tuberculosis concentrations dropped below the minimum inhibitory concentration. Conclusion: Minocycline could form a backbone of a shorter duration once-a-week pan-tuberculosis regimen. We propose a new concept of post-antibiotic microbial killing, distinct from post-antibiotic effect. We propose system hysteresis as the basis for the novel concept of pharmacologic memory, which allows intermittent dosing.

5.
Int J Infect Dis ; 104: 680-684, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33556616

RESUMO

BACKGROUND: Faropenem (F), an orally bioavailable ß-lactam, kills Mycobacterium tuberculosis (Mtb) without the help of a ß-lactamase inhibitor. This study explored the sterilizing effect of adding F once or twice daily to a linezolid (L) plus pyrazinamide (Z) backbone regimen. METHODS: In vitro studies were performed using the hollow fiber model of tuberculosis (HFS-TB) to compare the kill rates of: 1) ZL two-drug combination; 2) F administered once daily plus ZL (F1ZL); 3) F administered twice-daily plus once daily ZL (F2ZL); 4) F2ZL with high-dose Z (F2ZhiL); 5) standard therapy of isoniazid, rifampin and Z; and 6) non-treated controls. The study was performed over 56 days with three HFS-TB replicates for each regimen. RESULTS: Mtb in the non-treated HFS-TB grew at a rate of 0.018 ± 0.007 log10 CFU/mL/day. The exponential kill rates for standard therapy were 6.6-13.2-fold higher than ZL dual therapy. The F1ZL and F2ZL regimens ranked third. The pre-existing isoniazid-resistant sub-population in the inoculum (1.34 ± 0.57 log10 CFU/mL) grew to 4.21 ± 0.58 log10 CFU/mL in 56 days in non-treated HFS-TB. However, no isoniazid-resistant sub-population was recorded in any of the FZL combination regimens. CONCLUSION: Due to the slow kill rate compared to standard therapy, FZL regimens are unlikely to shorten therapy duration. Efficacy of these regimens against drug-resistant tuberculosis needs to be determined.


Assuntos
Antituberculosos/uso terapêutico , Linezolida/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , beta-Lactamas/uso terapêutico , Quimioterapia Combinada , Duração da Terapia , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Falha de Tratamento , Tuberculose/microbiologia
6.
J Glob Antimicrob Resist ; 24: 403-410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33508482

RESUMO

OBJECTIVES: To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration-time curve (AUC0-24) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin. METHODS: We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway. RESULTS: Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log10 CFU/mL Mtb. The EC50 was calculated as AUC0-24/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log10 CFU/mL kill was achieved by AUC0-24/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase. CONCLUSION: Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb.


Assuntos
Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33106263

RESUMO

Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0-24/MIC), with a PDT of 252. Second, in the hollow-fiber system model of tuberculosis, plasma-equivalent PDTs were identified as an AUC0-24/MIC of 195 in log-phase bacteria and 201 in pH 5.8 cultures. Third, delamanid plasma AUC0-24/MIC and sputum bacterial decline data from two early bactericidal activity trials identified a clinical PDT of AUC0-24/MIC of 171. Finally, the CFRs for the currently approved 100-mg BID dose were determined to be above 95% in two MDR-TB clinical trials. The CFR for the 200-mg QD dose, evaluated in a trial in which delamanid was administered as 100 mg BID for 8 weeks plus 200 mg QD for 18 weeks, was 89.3% based on the mouse PDT and >90% on the other PDTs. QTcF (QTc interval corrected for heart rate by Fridericia's formula) prolongation was approximately 50% lower for the 200 mg QD dose than the 100 mg BID dose. In conclusion, while CFRs of 100 mg BID and 200 mg QD delamanid were close to or above 90% in patients with MDR-TB, more-convenient once-daily dosing of delamanid is feasible and likely to have less effect on QTcF prolongation.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Antituberculosos/uso terapêutico , Humanos , Camundongos , Nitroimidazóis/uso terapêutico , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
8.
Pediatr Infect Dis J ; 39(12): 1092-1100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773662

RESUMO

BACKGROUND: Ceftazidime-avibactam is an effective agent for the treatment of tuberculosis (TB) but requires frequent administration because of a short half-life. Due to a longer half-life, ceftriaxone could allow intermittent dosing. METHODS: First, we identified the MIC of ceftriaxone with 15 mg/L avibactam in 30 clinical Mycobacterium tuberculosis isolates. Next, 2 ceftriaxone exposure-effect studies in the intracellular hollow fiber model of TB (HFS-TB) that mimics disseminated disease in young children, were performed. Ceftriaxone was administered once or twice daily for 28 days to explore percentage of time that the concentration persisted above MIC (%TMIC) ranging from 0 to 100%. In a third HFS-TB experiment, the "double cephalosporin" regimen of ceftazidime-ceftriaxone-avibactam was examined and analyzed using Bliss Independence. CONCLUSION: The MIC99 of the clinical strains was 32 mg/L, in the presence of 15 mg/L avibactam. Ceftriaxone %TMIC <42 had no microbial effect in the HFS-TB, %TMIC >54% demonstrated a 4.1 log10 colony-forming units per milliliter M. tuberculosis kill, while %TMIC mediating Emax was 68%. The "double cephalosporin" combination was highly synergistic. Monte Carlo experiments of 10,000 subjects identified the optimal ceftriaxone dose as 100 mg/kg twice a day. CONCLUSION: The combination of ceftriaxone-avibactam at 100 mg/kg could achieve Emax in >90% of children. The ceftriaxone potent activity M. tuberculosis could potentially shorten therapy in children with disseminated TB.


Assuntos
Antituberculosos , Compostos Azabicíclicos , Ceftriaxona , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Meníngea/microbiologia , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Compostos Azabicíclicos/farmacocinética , Compostos Azabicíclicos/farmacologia , Ceftriaxona/farmacocinética , Ceftriaxona/farmacologia , Humanos , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Modelos Biológicos
9.
J Antimicrob Chemother ; 75(2): 392-399, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713607

RESUMO

OBJECTIVES: Animal models have suggested that the combination of pretomanid with pyrazinamide and moxifloxacin (PaMZ) may shorten TB therapy duration to 3-4 months. Here, we tested that in the hollow-fibre system model of TB (HFS-TB). METHODS: A series of HFS-TB experiments were performed to compare the kill rates of the PaMZ regimen with the standard three-drug combination therapy. HFS-TB experiments were performed with bacilli in log-phase growth treated for 28 days, intracellular bacilli treated daily for 28 days and semi-dormant Mycobacterium tuberculosis treated with daily therapy for 56 days for sterilizing effect. Next, time-to-extinction equations were employed, followed by morphism transformation and Latin hypercube sampling, to determine the proportion of patients who achieved a time to extinction of 3, 4 or 6 months with each regimen. RESULTS: Using linear regression, the HFS-TB sterilizing effect rates of the PaMZ regimen versus the standard-therapy regimen during the 56 days were 0.18 (95% credible interval=0.13-0.23) versus 0.15 (95% credible interval=0.08-0.21) log10 cfu/mL/day, compared with 0.16 (95% credible interval=0.13-0.18) versus 0.11 (95% credible interval=0.09-0.13) log10 cfu/mL/day in the Phase II clinical trial, respectively. Using time-to-extinction and Latin hypercube sampling modelling, the expected percentages of patients in which the PaMZ regimen would achieve sterilization were 40.37% (95% credible interval=39.1-41.34) and 72.30% (95% credible interval=71.41-73.17) at 3 and 4 months duration of therapy, respectively, versus 93.67% (95% credible interval=93.18-94.13) at 6 months for standard therapy. CONCLUSIONS: The kill rates of the PaMZ regimen were predicted to be insufficient to achieve cure in less than 6 months in most patients.


Assuntos
Moxifloxacina/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/uso terapêutico , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Humanos , Matemática
10.
Front Pharmacol ; 11: 616294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542690

RESUMO

Background: Mycobacterium tuberculosis [Mtb] could be present in different metabolic population in the lung lesions, and nonreplicating persisters [NRP], associated with latent tuberculosis [TB], are the most difficult to kill. Objective: Test the combination of tedizolid, moxifloxacin, and faropenem for activity against NRP using Mtb SS18b in the hollow fiber model [HFS-TB]. Methods: Tedizolid and moxifloxacin were tested as, first, two-drug combination against log-phase growth [LPG] and, second, slowly replicating bacilli [SRB] under acidic condition and with faropenem to create a three-drug combination regimen. Finally, standard regimen [isoniazid-rifampin-pyrazinamide] was used as comparator in the HFS-TB experiment with NRP Mtb. HFS-TB units were sampled for drug-concentration measurement as well as for estimation of bacterial burden using solid agar and mycobacterial growth indicator tube [MGIT] method. Linear regression was used to calculate the kill slopes with each treatment regimen and analysis of variance (ANOVA) to compare the regimen. Results: Tedizolid at standard dose in combination with high-dose moxifloxacin killed 3.05 log10 CFU/ml LPG Mtb and 7.37 log10 CFU/ml SRB in the bactericidal and sterilizing activity HFS-TB experiments, respectively. There was no statistical difference between tedizolid-moxifloxacin-faropenem combination and the standard regimen as both killed 7.35 log10 CFU/ml NRP Mtb in 21 days. There was no emergence of resistance to any of the drugs studied in the three HFS-TB experiments. Conclusion: The experimental regimen of tedizolid, moxifloxacin, and faropenem could effectively kill NRP population of Mtb, and given the efficacy against different metabolic population of Mtb could serve as a pan-TB regimen. Clinical studies are warranted to validate the in vitro findings.

11.
J Antimicrob Chemother ; 74(7): 1952-1961, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039251

RESUMO

OBJECTIVES: Our aim was to identify the pharmacokinetic/pharmacodynamic parameters of minocycline in the hollow-fibre system (HFS) model of pulmonary Mycobacterium avium complex (MAC) and to identify the optimal clinical dose. METHODS: Minocycline MICs for 55 MAC clinical isolates from the Netherlands were determined. We also co-incubated primary isolated macrophages infected with MAC with minocycline. Next, we performed a 28 day HFS-MAC model dose-response study in which we mimicked pulmonary concentration-time profiles achieved in patients. The HFS-MAC model was sampled at intervals to determine the minocycline pharmacokinetics and MAC burden. We identified the AUC0-24/MIC ratios associated with 1.0 log10 cfu/mL kill below day 0 (stasis), defined as a bactericidal effect. We then performed 10000 Monte Carlo experiments to identify the optimal dose for a bactericidal effect in patients. RESULTS: The MIC for 50% and 90% of cumulative clinical isolates was 8 and 64 mg/L, respectively. Minocycline decreased MAC bacterial burden below stasis in primary isolated macrophages. In the HFS-MAC model, minocycline achieved a microbial kill of 3.6 log10 cfu/mL below stasis. The AUC0-24/MIC exposure associated with a bactericidal effect was 59. Monte Carlo experiments identified a minocycline susceptibility MIC breakpoint of 16 mg/L. At this proposed breakpoint, the clinical dose of 200 mg/day achieved the bactericidal effect exposure target in ∼50% of patients, while 400 mg/day achieved this in 73.6% of patients, in Monte Carlo experiments. CONCLUSIONS: Minocycline at a dose of 400 mg/day is expected to be bactericidal. We propose a clinical trial for validation.


Assuntos
Teorema de Bayes , Minociclina/uso terapêutico , Modelos Biológicos , Complexo Mycobacterium avium/efeitos dos fármacos , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Algoritmos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Método de Monte Carlo
12.
J Antimicrob Chemother ; 74(6): 1607-1617, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30820554

RESUMO

BACKGROUND: MDR-TB and XDR-TB have poor outcomes. OBJECTIVES: To examine the efficacy of tigecycline monotherapy in the hollow fibre system model of TB. METHODS: We performed pharmacokinetic/pharmacodynamic studies using tigecycline human-like concentration-time profiles in the hollow fibre system model of TB in five separate experiments using Mycobacterium tuberculosis in log-phase growth or as semi-dormant or intracellular bacilli, as monotherapy. We also compared efficacy with the isoniazid/rifampicin/pyrazinamide combination (standard therapy). We then applied extinction mathematics, morphisms and Latin hypercube sampling to identify duration of therapy with tigecycline monotherapy. RESULTS: The median tigecycline MIC for 30 M. tuberculosis clinical and laboratory isolates (67% MDR/XDR) was 2 mg/L. Tigecycline monotherapy was highly effective in killing M. tuberculosis in log-phase-growth and semi-dormant and intracellular M. tuberculosis. Once-a-week dosing had the same efficacy as daily therapy for the same cumulative dose; thus, tigecycline efficacy was linked to the AUC0-24/MIC ratio. Tigecycline replacement by daily minocycline after 4 weeks of therapy was effective in sterilizing bacilli. The AUC0-24/MIC ratio associated with optimal kill was 42.3. Tigecycline monotherapy had a maximum sterilizing effect (day 0 minus day 28) of 3.06 ±âŸ0.20 log10 cfu/mL (r2 = 0.92) compared with 3.92 ±âŸ0.45 log10 cfu/mL (r2 = 0.80) with optimized standard therapy. In our modelling, at a tigecycline monotherapy duration of 12 months, the proportion of patients with XDR-TB who reached bacterial population extinction was 64.51%. CONCLUSIONS: Tigecycline could cure patients with XDR-TB or MDR-TB who have failed recommended therapy. Once-a-week tigecycline could also replace second-line injectables in MDR-TB regimens.


Assuntos
Antituberculosos/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Tigeciclina/administração & dosagem , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacocinética , Esquema de Medicação , Monitoramento de Medicamentos , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Método de Monte Carlo , Tigeciclina/farmacocinética , Distribuição Tecidual
13.
J Infect Dis ; 219(6): 975-985, 2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30597040

RESUMO

Drug-resistant tuberculosis represents a global emergency, requiring new drugs. We found that minocycline was highly potent in laboratory strains of Mycobacterium tuberculosis and that 30 drug-susceptible and multidrug/extensively drug-resistant clinical strains were susceptible to clinically achievable concentrations. In the hollow fiber system model, lung concentration-time profiles of 7 mg/kg/day human-equivalent minocycline dose achieved bacterial kill rates equivalent to those of first-line antituberculosis agents. Minocycline killed extracellular bacilli directly. Minocycline also killed intracellular bacilli indirectly, via concentration-dependent granzyme A-driven apoptosis. Moreover, minocycline demonstrated dose-dependent antiinflammatory activity and downregulation of extracellular matrix-based remodeling pathways and, thus, could protect patients from tuberculosis immunopathology. In RNA sequencing of repetitive samples from the hollow fiber system and in independent protein abundance experiments, minocycline demonstrated dose-dependent inhibition of sonic hedgehog-patched-gli signaling. These findings have implications for improved lung remodeling and for dual immunomodulation and direct microbial kill-based treatment shortening regimens for drug-susceptible and drug-resistant latent and active M. tuberculosis infection.


Assuntos
Antituberculosos/farmacologia , Minociclina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Granzimas/metabolismo , Proteínas Hedgehog , Humanos , Testes de Sensibilidade Microbiana , Transdução de Sinais , Células THP-1 , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
14.
Clin Infect Dis ; 67(suppl_3): S342-S348, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496456

RESUMO

Background: Children are often neglected during early development of antituberculosis agents, and most receive treatment after it is first tested in adults. However, very young children have tuberculosis that differs in many respects from adult cavitary pneumonia and could have different toxicity profiles to drugs. Linezolid is effective against intracellular tuberculosis, a common manifestation in young children. However, linezolid has considerable toxicity due to inhibition of mitochondrial enzymes. Tedizolid could be a replacement if it shows equal efficacy and reduced toxicity. Methods: We performed tedizolid dose-effect studies in the hollow fiber system model of intracellular tuberculosis. We measured linezolid concentrations, colony-forming units (CFU), time-to-positivity, and monocyte viability and performed RNA sequencing on infected cells collected from repetitive sampling of each system. We also compared efficacy of tedizolid vs linezolid and vs tedizolid-moxifloxacin combination. Results: There was no downregulation of mitochondrial enzyme genes, with a tedizolid 0-24 hour area under the concentration-time curve (AUC0-24) of up to 90 mg*h/L. Instead, high exposures led to increased mitochondrial gene expression and monocyte survival. The AUC0-24 to minimum inhibitory concentration ratio associated with 80% of maximal bacterial kill (EC80) was 184 by CFU/mL (r2 = 0.96) and 189 by time-to-positivity (r2 = 0.99). Tedizolid EC80 killed 4.0 log10 CFU/mL higher than linezolid EC80. The tedizolid-moxifloxacin combination had a bacterial burden elimination rate constant of 0.27 ± 0.05 per day. Conclusions: Tedizolid demonstrated better efficacy than linezolid, without the mitochondrial toxicity gene or cytotoxicity signatures encountered with linezolid. Tedizolid-moxifloxacin combination had a high bacterial elimination rate.


Assuntos
Antibacterianos/farmacocinética , Moxifloxacina/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacocinética , Tetrazóis/farmacocinética , Tuberculose/tratamento farmacológico , Antibacterianos/uso terapêutico , Criança , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Moxifloxacina/uso terapêutico , Oxazolidinonas/uso terapêutico , Tetrazóis/uso terapêutico , Tuberculose/microbiologia
15.
Clin Infect Dis ; 67(suppl_3): S284-S292, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496458

RESUMO

Background: In the experimental arm of the OFLOTUB trial, gatifloxacin replaced ethambutol in the standard 4-month regimen for drug-susceptible pulmonary tuberculosis. The study included a nested pharmacokinetic (PK) study. We sought to determine if PK variability played a role in patient outcomes. Methods: Patients recruited in the trial were followed for 24 months, and relapse ascertained using spoligotyping. Blood was drawn for drug concentrations on 2 separate days during the first 2 months of therapy, and compartmental PK analyses was performed. Failure to attain sustained sputum culture conversion at the end of treatment, relapse, or death during follow-up defined therapy failure. In addition to standard statistical analyses, we utilized an ensemble of machine-learning methods to identify patterns and predictors of therapy failure from among 27 clinical and laboratory features. Results: Of 126 patients, 95 (75%) had favorable outcomes and 19 (15%) failed therapy, relapsed, or died. Pyrazinamide and rifampicin peak concentrations and area under the concentration-time curves (AUCs) were ranked higher (more important) than gatifloxacin AUCs. The distribution of individual drug concentrations and their ranking varied significantly between South African and West African trial sites; however, drug concentrations still accounted for 31% and 75% of variance of outcomes, respectively. We identified a 3-way antagonistic interaction of pyrazinamide, gatifloxacin, and rifampicin concentrations. These negative interactions disappeared if rifampicin peak concentration was above 7 mg/L. Conclusions: Concentration-dependent antagonism contributed to death, relapse, and therapy failure but was abrogated by high rifampicin concentrations. Therefore, increasing both rifampin and gatifloxacin doses could improve outcomes. Clinical Trials Registration: NCT00216385.


Assuntos
Antituberculosos/farmacocinética , Inteligência Artificial , Gatifloxacina/farmacocinética , Pirazinamida/farmacocinética , Rifampina/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Clin Infect Dis ; 67(suppl_3): S317-S326, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496457

RESUMO

Background: Ethionamide is used to treat multidrug-resistant tuberculosis (MDR-TB). The antimicrobial pharmacokinetics/pharmacodynamics, the contribution of ethionamide to the multidrug regimen, and events that lead to acquired drug resistance (ADR) are unclear. Methods: We performed a multidose hollow fiber system model of tuberculosis (HFS-TB) study to identify the 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios that achieved maximal kill and ADR suppression, defined as target exposures. Ethionamide-resistant isolates underwent whole-genome and targeted Sanger sequencing. We utilized Monte Carlo experiments (MCEs) to identify ethionamide doses that would achieve the target exposures in 10000 patients with pulmonary tuberculosis. We also identified predictors of time-to-sputum conversion in Tanzanian patients on ethionamide- and levofloxacin-based regimens using multivariate adaptive regression splines (MARS). Results: An AUC0-24/MIC >56.2 was identified as the target exposure in the HFS-TB. Early efflux pump induction to ethionamide monotherapy led to simultaneous ethambutol and isoniazid ADR, which abrogated microbial kill of an isoniazid-ethambutol-ethionamide regimen. Genome sequencing of isolates that arose during ethionamide monotherapy revealed mutations in both ethA and embA. In MCEs, 20 mg/kg/day achieved the AUC0-24/MIC >56.2 in >95% of patients, provided the Sensititre assay MIC was <2.5 mg/L. In the clinic, MARS revealed that ethionamide Sensititre MIC had linear negative relationships with time-to-sputum conversion until an MIC of 2.5 mg/L, above which patients with MDR-TB failed combination therapy. Conclusions: Ethionamide is an important contributor to MDR-TB treatment regimens, at Sensititre MIC <2.5 mg/L. Suboptimal ethionamide exposures led to efflux pump-mediated ADR.


Assuntos
Antituberculosos/farmacocinética , Etionamida/farmacocinética , Isoniazida/farmacocinética , Levofloxacino/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/administração & dosagem , Etionamida/administração & dosagem , Humanos , Isoniazida/administração & dosagem , Levofloxacino/administração & dosagem , Método de Monte Carlo , Mutação , Escarro/microbiologia
17.
Clin Infect Dis ; 67(suppl_3): S274-S283, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496459

RESUMO

Background: Gatifloxacin is used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The optimal dose is unknown. Methods: We performed a 28-day gatifloxacin hollow-fiber system model of tuberculosis (HFS-TB) study in order to identify the target exposures associated with optimal kill rates and resistance suppression. Monte Carlo experiments (MCE) were used to identify the dose that would achieve the target exposure in 10000 adult patients with meningeal or pulmonary MDR-TB. The optimal doses identified were validated using probit analyses of clinical data from 2 prospective clinical trials of patients with pulmonary and meningeal tuberculosis. Classification and regression-tree (CART) analyses were used to identify the gatifloxacin minimum inhibitory concentration (MIC) below which patients failed or relapsed on combination therapy. Results: The target exposure associated with optimal microbial kill rates and resistance suppression in the HFS-TB was a 0-24 hour area under the concentration-time curve-to-MIC of 184. MCE identified an optimal gatifloxacin dose of 800 mg/day for pulmonary and 1200 mg/day for meningeal MDR-TB, and a clinical susceptibility breakpoint of MIC ≤ 0.5 mg/L. In clinical trials, CART identified that 79% patients failed therapy if MIC was >2 mg/L, but 98% were cured if MIC was ≤0.5 mg/L. Probit analysis of clinical data demonstrated a >90% probability of a cure in patients if treated with 800 mg/day for pulmonary tuberculosis and 1200 mg/day for meningeal tuberculosis. Doses ≤400 mg/day were suboptimal. Conclusions: Gatifloxacin doses of 800 mg/day and 1200 mg/day are recommended for pulmonary and meningeal MDR-TB treatment, respectively. Gatifloxacin has a susceptible dose-dependent zone at MICs 0.5-2 mg/L.


Assuntos
Antituberculosos/farmacocinética , Gatifloxacina/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Estudos Prospectivos , Tuberculose Meníngea/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
18.
Clin Infect Dis ; 67(suppl_3): S308-S316, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496460

RESUMO

Background: d-cycloserine is used to treat multidrug-resistant tuberculosis. Its efficacy, contribution in combination therapy, and best clinical dose are unclear, also data on the d-cycloserine minimum inhibitory concentration (MIC) distributions is scant. Methods: We performed a systematic search to identify pharmacokinetic and pharmacodynamic studies performed with d-cycloserine. We then performed a combined exposure-effect and dose fractionation study of d-cycloserine in the hollow fiber system model of tuberculosis (HFS-TB). In parallel, we identified d-cycloserine MICs in 415 clinical Mycobacterium tuberculosis (Mtb) isolates from patients. We utilized these results, including intracavitary concentrations, to identify the clinical dose that would be able to achieve or exceed target exposures in 10000 patients using Monte Carlo experiments (MCEs). Results: There were no published d-cycloserine pharmacokinetics/pharmacodynamics studies identified. Therefore, we performed new HFS-TB experiments. Cyloserine killed 6.3 log10 colony-forming units (CFU)/mL extracellular bacilli over 28 days. Efficacy was driven by the percentage of time concentration persisted above MIC (%TMIC), with 1.0 log10 CFU/mL kill achieved by %TMIC = 30% (target exposure). The tentative epidemiological cutoff value with the Sensititre MYCOTB assay was 64 mg/L. In MCEs, 750 mg twice daily achieved target exposure in lung cavities of 92% of patients whereas 500 mg twice daily achieved target exposure in 85% of patients with meningitis. The proposed MCE-derived clinical susceptibility breakpoint at the proposed doses was 64 mg/L. Conclusions: Cycloserine is cidal against Mtb. The susceptibility breakpoint is 64 mg/L. However, the doses likely to achieve the cidality in patients are high, and could be neurotoxic.


Assuntos
Antituberculosos/farmacocinética , Ciclosserina/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/administração & dosagem , Ciclosserina/administração & dosagem , Humanos , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
19.
Clin Infect Dis ; 67(suppl_3): S336-S341, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496463

RESUMO

Background: Linezolid exhibits remarkable sterilizing effect in tuberculosis; however, a large proportion of patients develop serious adverse events. The congener tedizolid could have a better side-effect profile, but its sterilizing effect potential is unknown. Methods: We performed a 42-day tedizolid exposure-effect and dose-fractionation study in the hollow fiber system model of tuberculosis for sterilizing effect, using human-like intrapulmonary pharmacokinetics. Bacterial burden was examined using time to positivity (TTP) and colony-forming units (CFUs). Exposure-effect was examined using the inhibitory sigmoid maximal kill model. The exposure mediating 80% of maximal kill (EC80) was defined as the target exposure, and the lowest dose to achieve EC80 was identified in 10000-patient Monte Carlo experiments. The dose was also examined for probability of attaining concentrations associated with mitochondrial enzyme inhibition. Results: At maximal effect, tedizolid monotherapy totally eliminated 7.1 log10 CFU/mL Mycobacterium tuberculosis over 42 days; however, TTP still demonstrated some growth. Once-weekly tedizolid regimens killed as effectively as daily regimens, with an EC80 free drug 0- to 24-hour area under the concentration-time curve-to-minimum inhibitory concentration (MIC) ratio of 200. An oral tedizolid of 200 mg/day achieved the EC80 in 92% of 10000 patients. The susceptibility breakpoint was an MIC of 0.5 mg/L. The 200 mg/day dose did not achieve concentrations associated with mitochondrial enzyme inhibition. Conclusions: Tedizolid exhibits dramatic sterilizing effect and should be examined for pulmonary tuberculosis. A tedizolid dose of 200 mg/day or 700 mg twice a week is recommended for testing in patients; the intermittent tedizolid dosing schedule could be much safer than daily linezolid.


Assuntos
Antibacterianos/farmacocinética , Linezolida/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacocinética , Tetrazóis/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Antibacterianos/administração & dosagem , Humanos , Linezolida/administração & dosagem , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Oxazolidinonas/administração & dosagem , Tetrazóis/administração & dosagem
20.
Clin Infect Dis ; 67(suppl_3): S349-S358, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496464

RESUMO

Background: A major challenge in medicine is translation of preclinical model findings to humans, especially therapy duration. One major example is recent shorter-duration therapy regimen failures in tuberculosis. Methods: We used set theory mapping to develop a computational/modeling framework to map the time it takes to extinguish the Mycobacterium tuberculosis population on chemotherapy from multiple hollow fiber system model of tuberculosis (HFS-TB) experiments to that observed in patients. The predictive accuracy of the derived translation transformations was then tested using data from 108 HFS-TB Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) units, including 756 colony-forming units (CFU)/mL. Derived transformations, and Latin hypercube sampling-guided simulations were used to predict cure and relapse after 4 and 6 months of therapy. Outcomes were compared to observations, in 1932 patients in the REMoxTB clinical trial. Results: HFS-TB serial bacillary burden and serial sputum data in the derivation dataset formed a structure-preserving map. Bactericidal effect was mapped with a single step transformation, while the sterilizing effect was mapped with a 3-step transformation function. Using the HFS-TB REMoxTB data, we accurately predicted the proportion of patients cured in the 4-month REMoxTB clinical trial. Model-predicted vs clinical trial observations were (i) the ethambutol arm (77.0% [95% confidence interval {CI}, 74.4%-79.6%] vs 77.7% [95% CI, 74.3%-80.9%]) and (ii) the isoniazid arm (76.4% [95% CI, 73.9%-79.0%] vs 79.5% [95% CI, 76.1%-82.5%]). Conclusions: We developed a method to translate duration of therapy outcomes from preclinical models to tuberculosis patients.


Assuntos
Antituberculosos/farmacologia , Etambutol/farmacologia , Isoniazida/farmacologia , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Ensaios Clínicos como Assunto , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Biológicos , Recidiva , Escarro/microbiologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...